Multi-attributes tradespace exploration for survivability: Application to satellite radar

نویسندگان

  • Matthew G. Richards
  • Adam M. Ross
  • David B. Stein
  • Daniel E. Hastings
چکیده

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Multi-Attribute Tradespace Exploration (MATE) for Survivability is introduced as a general methodology for survivability analysis and demonstrated through an application to a satellite radar system. MATE for Survivability applies decision theory to the parametric modeling of thousands of design alternatives across representative distributions of disturbance environments. Survivability considerations are incorporated into the existing MATE process (i.e., a solution-generating and decision-making framework that applies decision theory to model-based design) by applying empirically-validated survivability design principles and value-based survivability metrics to concept generation and concept evaluation activities, respectively. MATE for Survivability consists of eight iterative phases: (1) define system value proposition, (2) generate concepts, (3) specify disturbances, (4) apply survivability principles, (5) model baseline system performance, (6) model impact of disturbances on dynamic system performance, (7) apply survivability metrics, and (8) select designs for further analysis. The application of MATE for Survivability to satellite radar demonstrates the importance of incorporating survivability considerations into conceptual design for identifying inherently survivable architectures that efficiently balance competing performance metrics of lifecycle cost, mission utility, and operational survivability. Nomenclature A T = threshold availability ∆V = change in velocity, m/s k i = multi-attribute utility scaling factor for attribute i TAT = time above critical value threshold, years T dl = time of design life, years U e = emergency utility threshold (zero by definition), utilities are dimensionless U i (x i) = single-attribute utility function over attribute x i U ‾ L = time-weighted average utility loss from design utility, U 0 ‾ U t = time-weighted average utility U(t) = utility delivery over time; multi-attribute utility trajectory U(x) = multi-attribute utility function over attributes x at a point in time U x = required utility threshold

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Attribute Tradespace Exploration for Survivability: Application to Satellite Radar

Multi-Attribute Tradespace Exploration (MATE) for Survivability is introduced as a general methodology for survivability analysis and demonstrated through an application to a satellite radar system. MATE for Survivability applies decision theory to the parametric modeling of thousands of design alternatives across representative distributions of disturbance environments. Survivability considera...

متن کامل

Multi-Attribute Tradespace Exploration for Survivability

Multi-Attribute Tradespace Exploration (MATE) for Survivability is introduced as a system analysis methodology to improve the generation and evaluation of survivable alternatives during conceptual design. MATE for Survivability applies decision theory to the parametric modeling of thousands of design alternatives across representative distributions of disturbance environments. To improve the ge...

متن کامل

Design for Survivability: Concept Generation and Evaluation in Dynamic Tradespace Exploration

Multi-Attribute Tradespace Exploration (MATE) for Survivability is introduced as a system analysis methodology to improve the generation and evaluation of survivable alternatives during conceptual design. MATE for Survivability applies decision theory to the parametric modeling of thousands of design alternatives across representative distributions of disturbance environments. To improve the ge...

متن کامل

Multi-attribute Tradespace Exploration

Survivability is the ability of a system to minimize the impact of a finite-duration disturbance on value delivery (i.e., stakeholder benefit at cost), achieved through (1) the reduction of the likelihood or magnitude of a disturbance, (2) the satisfaction of a minimally acceptable level of value delivery during and after a disturbance, and/or (3) a timely recovery. Traditionally specified as a...

متن کامل

A Method for Tradespace Exploration of Systems of Systems

Systems of Systems (SoS) are a current focus of many organizations interested in integrating assets and utilizing new technology to create multi-component systems that deliver value over time. The dynamic composition of SoS along with the managerial independence of their component systems necessitates systems engineering considerations and methods beyond those of traditional systems engineering...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009